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Section 1: INTRODUCTION 1-2
I

The purpose of this report is to adapt our earlier work in nonlinear shell-

element methodology (4-6,19] to the specific kinds of probiems encountered in

the analysis of critically-loaded reinforced concrete shell structures. To this

end, we develop a resultant-type form of the basic equations (of motion) that

is both appropriate for the treatment of thick, layered shells and leads to an

efficient finite-element implementation as well. By eliminating most of the

work associated with thickness integration, the approach should be particu-

larly effective when numerous layers and/or thickness integration points are

required, as in the case of inelastically responding reinforced concrete. Fur- -

thermore, adhering to a Continuum-Based approach, we continue to employ

pointwise constitutive relations for accurate through-thickness stress calcula-

tions, though these are ultimately presented to the element computational

routines in the form of resultants. Finally, the implementation of these new

procedures represents a straightforward extension of our current shell-element

software package.

The organization of the report is as follows. In Section 2, our previ-

ous work is reviewed, with the main intent of introducing all of the perti-

nent notation. Then in Section 3, the basic equations, used as the starting S
point for finite-element discretization in (191, are generalized to accomodate

thick/layered shells. The impact of these revisions on the finite-element im-

plementation is presented in Section 4, where an outline of the Global and

Local solution algorithms is presented as well. Finally, a brief summary and

conclusions are provided in Section 5.

1-2
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Section 2: REVIEW OF PREVIOUS WORK 2-2

§2.1 Background

In reference 14], a Continuum-Based (CB) approach to nonlinear finite-element shell analy-

sis is developed. These developments represent a generalization of the "degenerated-solid"

element, introduced by Ahmad et al. [1] for linear analysis. The basic advantage of

the CB approach is its convenient avoidance of complicated (and often ambiguous) shell

equations, while at the same time providing a straightforward vehicle for finite-element

discretization - via CO displacement interpolation. A second advantage is the natural in-

clusion of transverse-shear deformability, which increases the thickness regime over which

the method is applicable.

The CB approach presented in [41 extends the capabilities to include arbitrarily large

rotations, moderately large strains and a large class of (elastic/plastic) constitutive mod-

els. However, due to the full three-dimensional character of the equations - the thickness

coordinate, i, appears explicitly in the element arrays - element formation can be quite

expensive. This is especially true in the case of multi-layered inelastic shells, where thick-

ness integration may constitute a substantial portion of the computing time. Thus, in [19],

the thickness coordinate is pre-integrated out of the arrays by making several fthinness"

assumptions, namely:

(Al) Normality of transverse fibers is assumed in any fixed configuration. (This does
not preclude transverse shear deformation on an incremental basis.)

(A2) Curvature effects are approximated by using the average (reference surface) met-
ric when computing kinematic quantities. (This is tantamount to firet approzi-
mation shell theories [2,11] that neglect terms of order h/R with respect to 1.)

(A3) Toper of the shell wall is assumed to be gradual enough that: (i) derivatives of
Z along the surface directions may be neglected (kinematically) and (ii) the 'zero
normal stress' hypothesis may be enforced with respect to the reference-surface
normal. (This does not preclude thickness jumps.)

These assumptions leads to resultant-oriented equations (and element arrays) that

involve only surface integration. We therefore refer to the approach as the Continuum-

Based Resultant (CBR) formulation - to distinguish it from classical Resultant-Based

formulations.

2-2



2-3 §2.2 CONTINUUM-BASED (CB) SHELL THEORY

The CBR approach is significantly more economical than the CB approach, but due to

the above assumptions the advantages are biased towards "thin" shells, with a degradation

of accuracy anticipated as hIR (current thickness to minimum radius of curvature) is

increased.

In Section 3, the economic advantages of the CBR approach are extended to the "thick"

shell regime. The remainder of the current section reviews the basic CB and CBR shell

equations and notational pre-requisites to the sequel. For greater depth and detail, the

reader is referred to [19].

§2.2 Continuum-Based (CB) Shell Theory

2.2.1 Continuum Equations

We start with the Linearized Variational (LV) equations governing the incremen-

tal motion of a general three-dimensional continuum 116,171. Note that a Lagrangian

(material-based) description of the motion is being employed and, unless otherwise spec-

ified, all vector and tensor components are expressed in a fixed (global) Cartesian basis,

with indices i, j, k, 1 ranging from 1-3.

In operator notation, the LV equations may be written

DM(Aii) + DY(Au) = 16(u)- yrt(u) -. (f) (2.1)

where yezt is the external force operator, rnt the internal force operator, 4 the inertial

force (or mass) operator, DY the linearized internal force (or stiffness) operator, and DA4

(the linearized mass operator) is identically equal to M4. The argument, u, represents

the material displacement vector, and 6, the corresponding acceleration vector - both

considered to be functions of the material coordinates, X,.

The incremental displacements and accelerations, Au and Aid, emanate from the

linearization and are to be interpreted as excursions from the known (current) configuration

2-3 S



Section 2: REVIEW OF PREVIOUS WORK 2-4

associated with u. Note that the entire right-hand-side of (2.1) is thus known, while the

left-hand-side involves the tangent operators and the unknown Au. Thus (2.1) constitutes

the basis for subsequent iterative algorithms (Section 4).

In the current report, we will concentrate on the internal force and stiffness operators,
l i " t and DY, since the external force and mass operators are relatively unaffected by

the choice of shell formulation (i.e., CB or CBR). Furthermore, it is these operators that

engender the bulk of the cost in subsequent finite-element numerical computations. Their

* continuum definitions are given as follows

Yt = J 6sT- 4 y (2.2)

V

and

DYT(Au) = 6sE-CAdV + fV(6uj)Tv7uV )tdV (2.3)
V V

D 3ro"tess D1'00 m

where the integrals are performed over the current volume V of the body, with associated

spatial coordinates, z,.

In these expressions, Af is an incremental strain "vector" corresponding to the tensor

+ (A + Au) (2.4)

and arranged in the order

AC = LAeLi, AC22 , Ac83 , 2Me 1 , 2AC23 , 2AcsCj (2.5)

Similarly, r is the "vector" corresponding to the Cauchy stress tensor, a, and arranged

in the order

1= 22, , oh3, 0,2, 023, 03 1 J (2.6)

2-4
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2-5 §2.2 CONTINUUM-BASED (CB) SHELL THEORY

The symbol 6 in (2.2) and (2.3) indicates a variational (or virtual) quantity, so that 6 is

defined in precisely the same manner as A_ (2.5), except with Au, replaced by 6ui, the

virtual displacement. (Note: 6u may also be viewed as the weighting function used to

obtain the variational equations; hence, we endow it with essentially the same properties

as Au.)

Finally, !C is the "matrix" corresponding to the material response tensor, C. This

tensor is associated with the rate constitutive equations presented in [7 (see also §4.2).

The corresponding matrix is arranged such that

iabui aauiTa
a__ aA 6TCAc (2.7)

'.o.

i2-

2-5



Soction 2: REVIEW OF PREVIOUS WORK 2-6

2.1.2 Introduction of Shell Hvyotheses

Next, the continuum is specialized to the form of a shell, i.e., a body bounded by two

closely-spaced, generally curved surfaces separated by a relatively small, variable thickness

dimension h.

To obtain the Continuum-Based shell equations, we translate this qualitative descrip-

tion into the following simplifying hypotheses (i.e., mathematical constraints) which are

subsequently introduced in the LV equations (2.1)

Kinematic Hypotheses

Total: ,,(2.8)
1u(R, ) U(1, ) +iU(f,")

Au AU+iAfi
Incremental: (2.9)

Static Hypotheses

Total: oss(, ii) = 0 (2.10)

Incremental: '4e(f, i) 0 (2.11)

In the above expressions, , ,? are surface (curvilinear) coordinates, and i is the thickness

coordinate measured from the reference-surface (see Fig. 1). For the simple case when

2-6
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2-7 §2.2 CONTINUUM-BASED (CB) SHELL THEORY

the reference-surface is chosen to coincide with the mid-surface, i and h are related by

= Ch/2, where C is a parameter that ranges linearly from -1 at the bottom-surface to +1

at the top-surface.
p

Regarding the kinematic hypotheses, Yi are the coordinates of a point on the reference-

surface, 1 is the unit pseudo-normal vector (i.e, the current orientation of a vector initially

normal to the reference-surface), and Vi and ii, are the displacements of the reference-

surface and psuedo-normal (relative to the reference-surface), respectively (see Fig. 2).

Thus, (2.8) expresses the hypothesis that normals remain straight via linearity through the

thickness. The incremental constraint (2.9) says that the incremental pseudo-normal dis-

placement vector A- has no component parallel to the pseudo-normal itself. The equation S

is therefore an expression of the incremental rigidity of the normal. Note that any two

components of Afi in a plane orthogonal to 9 may be associated with rotation increments,

say A6lp and A82p, as illustrated in Figure 2.
S

Regarding the static hypotheses, we have introduced a local Cartesian coordinate

basis at each point (Cr), 'i), called the lamina basis (denoted by the subscript "t"). The

orthogonal lamina coordinates, zi, = (zlE,z2E, z3E) or (xi, yi, ze), are defined such that

zt and yt lie in the plane tangent to the the surface i = constant, with zi normal to

that surface (Fig. 3). Thus, (2.10) enforces the zero normal stress constraint in the -

current configuration, while (2.11) enforces the same constraint on a rate (or, equivalently,

incremental) basis. Note that for this latter purpose, an objective rate is chosen, namely
v0 T) - the Truesdell rate [17].

Incorporating the above constraints in the continuum variational operators (2.2)-(2.3)

leads to the following CB shell counterparts

2

2-7 t



Section 2: REVIEW OF PREVIOUS WORK 2-S

yt~ ~ I , J iti dV (2.12)

V

Dy"bee'(AU) = 4T Qj dV (2.13)
V

DY7a(Au) = JV,(6U,) T aV(Aui) dV (2.14)
V

where

AL! IArzzjj Ac1,11, 2Aez11 , 2Aevsj, 2Aeszj] (2.15)

and

lose 1  vZ2ei crY1 cysts, Oaorzx (2.16)

and Ct is obtained by static condensation of the '33' component in C, as a result of (2.11).

The lamina-subscripted variables are related to the corresponding global Cartesian

quantities via the orthogonal transformation matrix, L, defined such that

=j Lv (2.17)

* and

=e LtLT' (2.18)

where v is a generic vector and t is a generic second-rank tensor.

Finally, note that the total kinematic constraint (2.8), expressing the through-

thickness linearity of the displacement field, is implicit in (2.12)-(2.14), while the in-

cremental kinematic constraint (2.9) is more effectively imposed later, on a discrete (i.e.,

finite-element nodal) basis.

2-8



2-9 §2.3 REDUCTION TO RESULTANT (CBR) EQUATIONS

§2.3 Reduction to Resultant (CBR) Equations

The CB shell equations differ from conventional shell equations in that they involve full

volume integration (for a discussion of other differences refer to 1191). In [19] (and simi-

larly in [15]), the thickness coordinate, i, is pre-integrated out by making the "thinness"

assumptions reviewed in Section 2.1. Without such assumptions, even though the displace-

ments are linear in i (see (2.8)), the strains do not in general inherit this nice feature. The

culprit is the Jacobian matrix, J1 , relating curvilinear (, rj E) and Cartesian (zi, ye, ze)

derivatives, i.e.,

j T49( (2.19)

where

J1 =~ tC7 C C (2.20) **

In general, Jj is a full matrix with at least a linear dependence on i; hence, its inverse

engenders a rational i dependence in all laminar derivatives via (2.19). This distributes

the thickness coordinate throughout the variational operators, (2.12)-(2.14), and inhibits

any further simplification.

However, under the assumptions (A1)-(A3) given in Section 2.1, J, is replaced by the
i-independent matrix

[J 0/2 1 (2.21)

.0 h/2]

where the bar indicates evaluation at the reference surface. Employing (2.20), the varia-

tional equations are reduced to CBR form, wherein the pertinent operators are redefined

2-9 1
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Section 2: REVIEW OF PREVIOUS WORK 2-10

as

1t (u) = f . dS (2.22)
$
S

DY"'(u) = 6eTD AedS (2.23)

S

D790° (AU) = fgT S g, dS (2.24)

S

Notice that the volume integrals have been replaced by surface integrals and the

previous stress and strain measures replaced by corresponding resultant quantities. These

z-independent quantities are partitioned into membrane, bending and transverse-shear

components as follows

Ae = Ae or An (2.25)
Ae" A

= { b  or (2.26)

7D m  Dmb  01

D Db (2.27)

sylm.Ds

S m' ] (2.28)

.Sym. 0

The resultant quantities Ae, g and D, are related to the pointwise continuum quan-

2-10
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2-11 §2.3 REDUCTION TO RESULTANT (CBR) EQUATIONS

tities via a i-dependent partitioning matrix, Z, i.e.,

Al = Z(i) Ae( , 17) (2.29)

ZT(() (; tdi (2.30)
i.-

D = Z (j) . ,Z(i)di (2.31)
i

where

z = (2.32) .0 t

(Note: In [19], the 2 x 2 identity matrix in the lower right corner of Z is replaced with a

diagonal matrix of shear correction factors.)

In particular, the individual stress resultants appearing in (2.26) and (2.28) are defined

as follows

n 1 " d( (2.33)

-m = slzzt, 0VYV, I zt i di (2.34)
i

q j di (2.35)

m' = f L[zzi, aYVw, zIe JTi2 di (2.36)

q/= f L ozz, asyj j i di (2.37)

and n, m and m' are expanded matrix counterparts of 11, m and M', respectively. For

example
n di

l" "i - ............ l I ,I -- I "I~l~ E m



Section 2: REVIEW OF PREVIOUS WORK 2-12

Finally, the individual resultant strain-displacement and gradient-displacement rela-

tions (the latter required for DYe0') may be written

Ae- + ai ai (2.38)

A baL aA;i (8Ai aAV (2.39)

=W aA8__ + a)JT

Aei ( - + Av) 2z We (2.40)

and

Ag& = Ive(Ai), VI(AUij), Au j (2.41)

*where the laminar derivatives are computed via the reference surface Jacobian, j. It

* should be noted that through these expressions, the kinematic constraint (2.8) now appears

explicitly in the LV equations. -

2-12



2-13 §2.4 FINITE-ELEMENT DISCRETIZATION

12.4 Finite-Element Discretization

Finite-element matrix equations of motion are easily obtained from either the CB or CBR

shell equations by employing an iaoparametrie [4,201 form of local approximation. Thus,

both the displacements and coordinates within an element subdomain are interpolated

from corresponding nodal quantities as follows

No.

q) ZNa P7) R, (2.42)

No.

A(C, = N,(C, 17) Af (2.44)

N.,,
AU( , 17) = N N(C, 17 ) Aiu. (2.45)

6L1

where the subscript "a" ranges over the number of element nodes, and for quadrilateral

elements, the N. are typically chosen as Lagrangian interpolation functions (see Fig. 4).

Note that the interpolation is performed in a fized Cartesian basis, usually lamina or global,

depending on the context.

Substitution of (2.37)-(2.40) into the LV equations (2.1) yields the corresponding

finite-element matrix equations

Mad + (Km t + Kg9 °m )Ad = Fe z t - F"" - Md (2.46)

where M is the assembled mass matrix (from M), F'zt is the assembled external force

vector (from eZt), K m't and Kgeom are the assembled material and geometric stiffness

matrices, respectively (from DY''ha and Dl"..) and Fl is the assembled internal force

vector (from lint). The incremental displacement vector, Ad, contains all of the active

nodal degrees-of-freedom. As explained in Section 4, these degrees-of-freedom are usually .--1
expressed in a shell-oriented (rather than global-Cartesian) coordinate system.

2-13 S



SectIon 2: REVIEW OF PREVIOUS WORK 2-14

The above arrays are assembled from the individual element arrays 1201, with the

linkage established by the element displacement vectors, Ade, that is

Ad = (Ad.) = {AdA)

where "a" is an element node number and "A" is the corresponding global node number.

At each shell node, we have potentially 6 degrees-of-freedom, defined by

Ad: = (2.47)

However, during assembly the element arrays are suitably transformed to discretely enforce

the shell incremental kinematic constraint (2.9) as mentioned above. This reduces the

number of degrees-of-freedom per node to 5 - except where junctures occur f 19).

IA

In closing this section, we give the specific definitions of the element arrays F ' t e,

Km tle and K' which result from substituting (2.37)-(2.40) into the CBR shell oper-

ators (2.22)-(2.24), as it will be useful to compare these to the revised arrays presented in

Section 4. In terms of nodal contributions, we have

F'-"t Bs dS (2.48)

S

=m-te f B D B, dS (2.49)

]b (2.50)

where B. is a nodal block of the element incremental strain-displacement matrix, defined

by the relationship
No.

= 1B.(4 ,,)Ad 6  (2.51)

2-14



2-15 §2.4 FINITE-ELEMENT DISCRETIZATION

In practice, the B matrix at a given (integration) point, ~,,,is first defined in the lamina

system at that point such that

Ae(f, i) =~ Za( ,17) Adat (2.52)

where the lamina submatrix, B.. is related to the globally attached version via

Ba = Ba1 FL] (2.53)

The block-diagonal matrix, rLJ, is the expanded lamina transformation for a nodal DOF

vector (2.43), i.e.,

[L] 0][ (2.54)

Using the above definitions, the CBR version of Bal in terms of the element shape

functions, Na, is given as follows

0a. 0 I 0 0 01

0 Nayt 0 I 0 0 0

Na,y, Na,z1t 0 0 0 0

0 0 0 Na,:1  0 0
B~1  0 0 0 I 0 Ny,0 (2.55)

0 0 0 Na'y1  Na,:1  0

o 0 Na:1  I Na, 0 0

o o Na,y1  0 Na 0.

2-15



Section 2: REVIEW OF PREVIOUS WORK 2-18

Finally, the scalar coefficients appearing in the CBR geometric stiffness matrix (2.46)

are defined as

gl= V,(Na)tDVe(Nb) (2.56)

gg= Vj(N.)t mVE(Nb) + VI(Na) t qNb (2.57)

gag VE(N.)'mVl(Nb) + NqtV,(Nb) (.8

ga&& Ve(NG)tmIVj(Nb) + Ndq"V(Nb)

+ Vi(N 6 )t q'Nb (2.59)

2-16
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SectIon 3: EXTENSION TO THICK/LAYERED SHELLS 3-2

§3.1 Motivation

While the CBR shell assumptions employed in the previous section greatly reduce finite-

element computational costs via the use of thickness pre-integration, at the same time

they restrict the maximum thickness-to-radius regime relative to the original CB formula-

tion. Thus, for thick shells with substantial curvature (or curvature change), there is the

possibility for a serious degradation of accuracy.

Furthermore, for problems in which transverse-shear effects become significant, e.g.,

in moderately thick shells with shear-flexible layers, it may be necessary to resort to a more

refined description of through-thickness kinematics than provided by the straight-normal

approximation employed in both CB and CBR formulations.

Hence, our goal in this section is as follows. We would like to relax the maximum-

thickness limitations engendered in our previous work, while at the same time retaining the

cost-effectiveness of the thickness pre-integration treatment of multi-layered elastic/plastic

shells.

§3.2 Revised Kinematics 1: Curvature Effects

The thickness-to-radius limitation imposed by the CBR method may be directly attributed

to the Curvature Assumption (A2), wherein the surface metric, or Jacobian, is held con-

stant (at its reference surface value) through the thickness. Recall from §2.3 that the

reason for doing this is that it leads to a linear through-thickness variation of the incre-

mental strains, and hence to a simple separation of direct and moment stress-resultants.

Once such resultants were computed, the variational (equilibrium) equations were devoid

of the thickness coordinate, i, and the formation of finite-element equilibrium arrays was

reduced in scope from volume to surface integration.

Upon closer look at the Jacobian, and how it influences the strain-displacement re-

lations, it becomes apparent that if we agree to retain the other two CBR assumptions,

i.e., Normality (Al) and Taper (A3), then the Curvature Assumption may be completely

abandoned without unduly complicating the equations. The derivation follows.

3-2
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3-3 §3.2 REVISED KINEMATICS 1: CURVATURE EFFECTS

3.2.1 The Surface Jacobian

First, as observed in [19], after invoking CBR assumptions (Al) and (A3), the Jacobian

matrix decouples into laminar (in-plane) and transverse partitions -. .

aX j 01 (3.1)
al =[0 h/2]

where Jt, the surface Jacobian, has the linear through-thickness variation

J1 = +zi t (3.2)

with

* I (3.3)

and

The inverse of J, (used to obtain laminar derivatives from surface-coordinate deriva-

tives) is thus the following matrix of rational polynomials in i

t[;ofT + , J1 /j(P) (3.5) ". -

where

-;cr ri P1 1
;cf -; (3.6)

and

"J11 (3.7) 'i .

are the transposed cofactor matrices of J, and ji, respectively, and the surface Jacobian

determinant, i(i), appearing in the denominator is the following quadratic polynomial .

j(i) = det(jz) = jo + iJ. + j 2i 2  (3.8)

3-3
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where

i Lo a, 8ZL;:) (3.9)

(a.t apt a avt aij aye ail a).

3 2 - a a? aza ( 3.11)".,

REMARK 3.1

Note that c°f~t Joa,, and 2 involve only the reference-surface quantities, and

and hence are independent of I.

REMARK 3.2

When the CBR Curvature Assumption (A2) is introduced as well, equation (3.1) is replaced
by the simpler approximation (2.21) so that

-J = j/o (3.12)

which is just the first term in a Taylor expansion of (3.5) about i = 0, and leads to a first
opprozmation shell theory.

Comparing this with (3.5), we see that the price of discarding the Curvature Assump-
tion is an additional i-scaled matrix in the Jacobian numerator and a quadratic scalar

.Y 1function of i in the denominator.

I3..

I -

=. -4



3-5 §3.2 REVISED KINEMATICS 1: CURVATURE EFFECTS

3.2.2 Laminar Displacement Derivatives

We now examine the effect of employing the Jacobian matrix (3.5), instead of the

more restrictive CBR version, for the computation of laminar derivatives, as required in

the CB shell internal force and stiffness operators (2.12)-(2.14).

The in-plane laminar derivatives of displacement are computed from the corresponding

surface-coordinate derivatives via

(3.13)

~,c(P)P)

where the (P) superscript restricts our attention to planar components, i.e.,

a(P) = I ' } and (3.14)

ax(P 8(-)aP

while the subscript 'i' in (3.13) may range from 1 - 3.

Now, since

aAu,, aA,,tj,, (3.15)
a -'-  = " + Z ;

we may apply (3.13) independently to translational and rotational components. Employing

the new definition (3.5) leads to

a/t, 1 of awzie, Cf .oawiiO" = i(-- j +i (3.16)
axPPj() 1  ac a

and

(P) = ( + z " a (3-17

Finally, substituting (3.16) and (3.17) back into (3.15) yields the following useful expression

3-.
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for computing laminar displacement derivatives

aa 1 [TA-i;~ + f + st + 12a~j
(3.18)

where the wide bars and hats above the displacement derivatives in-

dicate association with Jj and ji, respectively, i.e.

___ =o j-TaI (3.19)
~(P) acp

8lau~i def -T CIA (3m
ax ~ i (P) a~)(.0

. 3 U ~ d l Q z ~ .T 8A ( 3 .2 1 )
a(P) itafp

a15i, do (2 1 -T_ _ (3.22)
ax(P) itafp

and

+ .\ Q)i+Q\i
=P (3.23)

REMARK 3.3

The CBR (curvature-restricted) case is recovered by neglecting J, and replacing j by 1.
The result is___

=xP axAitp8)t (3.24)

which is the basis for the definitions given in §2.3.

3-0-
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3.2.3 Strain-Displacement Relations

Equation (3.18) may be used to construct similarly partitioned incremental strain-

displacement relations.....

First define the vector of in-plane incremental strain components as

C P ) A [,C(P) + iA(P) + - (3.25)
_ ~ _0 2f1v -2.

where

& A(P) ( 1 (3.26)

AC(P)= p3 / + (3.27)
____ aAF aAU
8_+ t)+(-~

,.~~~ ~ - fyioe. ... .-)

L -

(P) - L (3.28)

aox aAJ

Similarly, define a vector of transverse shear strain increments having the same struc-

ture as the in-plane components except for an additional contribution from the normal

derivatives - a( •)lze

(3.29)

= + +  A1

+5

t . . . .
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Rewriting (3.29) in the same form as (3.25), we obtain

_ [~ ±ZC~ + +'. j (3.30)

where

- {(S} (3.31)
ayj

A_-s) ' (3.32)

8AAW

A(S) -

AC(S) - f E (3.34) ."

3.2.4 Resultant-Oriented Strain Measures

To complete the kinematic development and prepare for insertion in the variational

equations, we separate out the i-dependence in (3.25) and (3.30) via a partitioning matrix

and deal with an expanded set of i-independent strain measures. This is analogous to the

CBR membrane, bending and shear partitions presented in §2.3.

Thus, for the planar (membrane/bending) components, we define

, - Z(" ,(") (3.35)

where (P)

Ae = (3.36)

A(P)J

3-S
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and(P) il p1.. (3.37)

Similarly, for the transverse (shear) components, we define

A C(S) - Z(5 )Ae~5 ) (3.38)

where AC(S)

(s
- (5) (3.39)

and

- -'-Ii I 3 ~)i](3.40)

j(P)

We intend to employ (3.35) and (3.38) to pre-integrate the LV equations through the

thickness. However, this is postponed until some additional kinematic effects have been

incorporated.

L

3-9



Section 3: EXTENSION TO THICK/LAYERED SHELLS 3-10

§3.3 Revised Kinematics 2: Transverse-Shear Effects

In this section, we introduce a simple correction to the transverse-shear strain-displacement

-" relations used in the preceding sections. The correction allows for a predefined, e.g.,

parabolic, distribution of At,., and Aatvg through the thickness as compared with the

weighted constant value used in the conventional Reissner-type theory. Hence, more accu-

rate calculation of pointwise transverse-shear stresses is expected, which can be especially

important in the case of thick inelastically deforming shells. Furthermore, such an ap-

proach may eliminate the need for transverse shear correction factors (in some cases), and

hence relieve the user input burden.

Before proceeding, we note that this type of approach is not new. It has been used

by others (e.g., 13]) with good experimental correlation, although mainly in the context of
thick homogeneous elastic shells. While the advantages of the profile correction are not

as obvious for inelastic/layered shells, the justification is that it is easy to evaluate and

basically free of charge.

In light of the above explanation, the earlier definitions of the transverse shear strain

increments are replaced by

Z (I + (3.41)

where, as suggested in 131, we tentatively employ the parabolic profile

PP) (3.42)

in which i"'" is the distance from the shell reference surface to the mid-surface, i.e., the

ccentricity.

The correction given by (3.42) is thus consistent with the important case of shear-

stress-free boundary conditions on top and bottom shell surfaces.

Introducing (3.41) in the partitioned strain-displacement relations given in (3.38) sim-

.3-10



3-11 §3.3 REVISEO KINEMATICS 2:. TRANSVERSE-SHEAR EFFECTS

ply changes the definition of Z(S) (3.39) to

Z(S) (1+PPi)) 1  l1j i)J(.3
017(i) 3-3

3-11
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§3.4 Revised Variational Equations

By direct substitution of the revised kinematic relations given in (3.25)-(3.40) into the C8

variational equations (2.1),(2.12)-(2.14) we arrive at what we shall call the CBR2 form of

the equations (for "2nd apprcmimation CBRU). The only operators affected are the internal

force and stiffness (material and geometric). The revised definitions are presented here.

or In the following definitions, all surface integrals apply to the reference surface (just

like in the CBR versions). The i dependence of dS is not being neglected, but rather

absorbed into the integrand via the identity

dS(i) - ) 4S (3.44)

where dS is the differential surface area at the reference surface and .: is the normalized

surface Jacobian defined by (3.8) and (3.23). In the sequel, the symbol dS is used instead

of dS for notational simplicity, that is the bars are omitted.

3.4.1 CBR2 Internal Force Onerator

= (6 e(P)Ts(P) + 6e()TS(S))$dS (3.45)

S

* where(P
soP

_(P (P) d, 3.6

*(P)(P or {s j (P)jd (346
'2

and ()(iS1 f ~

(S)S) J

The (P) and (S) superscripts on the stress vectors have the same meaning as for the

3-12
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strain vectors, i.e.,

*(P) -(3.48)

and(

V( - (3.49)

or,,

and the vectors, x(P) and x(S), constitute membrane/bending and shear stress-resultants

conjugate to the strain measures beP and 6e(s), respectively.

Note that j(i) from (3.44) has been factored into the stress-resultant definitions (3.46)

and (3.47).

3-13
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3.4.2 CBR2 Material Stiffness Overator

!Ill(6e(P)TD(P)A(P) + 6e(S)TD(S)Ae(S)) dS (3.50)

* where the in-Plane and transverse-Shear constitutive-resultant matrices are defined by

(P) !Q(P) i (P)i2

&Pi C (P2i1

D( - f.P~ z() di (3.51)

x ym. C zj4kJ

PLC(S) a(S)., - (S) c(S)-:

j (S).i 2  t(S)i3 -(S)

D (S (I~ +() AM )2Zi di (3.52)

(P (5)

*The constitutive tensors,_ and ,are the partitions of tj corresponding to the

planar and transverse-shear stress/strain components defined in (3.25) and (3.29), respec- .

tively.

3.4.3 CBR2 Geometric Stiffness Oerator

p3

D 7"' = J~6gTS AgdS (3.53)

* where

S zGTezG'idi (3.54)

and

J(i)0 0 i10

P_ 3-14
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Expansion of (3.54) yields the following 'initial-stress' resultant matrix

Sil S1 2 S13 Sl4'

S22 S23  S24  "
S = (3.56)

S[m. S33 S34
S44 J

where, for I and J = 1, 2 or 3:
~1i v ( P')  -  P -di (3.57)

and

S14 aJ(S)ihdi (3.58)
f

and by the zero-normal-stress condition,

S4,4  f 3 (i) ase di E 0 (3.59)

The partitioned gradient vector, Agi, in (3.53) is defined as follows{VO(Au,1)

Ag, = V1 A(3.60)

V2(AUi,) ( :

where the subscripted gradient operators are analogous to the subscripted strain measures,

(3.26)-(3.28), i.e.,

Vo(Aut) = (3.61)
ax,(P)

vi(Aui,) = x(P) + (3.62)

V2 (Aui1 ) = 8Aut (3.63) - -oax(P) •.-.:

The CBR2 shell operators presented above are now in appropriate form for finite-

element discretization.

3-15
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Section 4: FINITE-ELEMENT IMPLEMENTATION 4-2

§4.1 Overview

In this section, we discuss the numerical implementation of the extended CBR, or CBR2,

shell theory using the same finite-element framework as employed in our previous work

(e.g., 14],1191). The discussion includes modifications to the element strain interpolation

matrices reflecting the kinematic revisions presented in Section 3, corresponding formulas

for computing the element force and stiffness arrays, a summary of specific shell-element

types (e.g., 4, 9 and 16-node) and an outline of the solution procedures used to obtain

displacements and stresses. Section 2.4 is recommended as background reading.

§4.2 Revised Element Arrays

4.2.1 Strain-Displacement Matrices

Substituting the CO element displacement approximations, (2.37)-(2.40) into the CBR2

incremental strain-displacement relations, (3.36) and (3.39), leads to the following element

counterparts.

Ne..

Ae(p) 7)= B(P)( , I)Add (4.1)
a=1

and Xr.

Ae(S) = B(s)(tq)Ad (4.2)
0=1l

where B and (s) are element membrane/bending and transverse-shear strain-displace-

ment submatrices at element node "a7, respectively; and Ad. is the element incremental

displacement, or DOF, vector at node "a", resolved into global components (see (2.43)).

As explained in Section 2.4, the B matrices are obtained first with respect to the local

lamina basis and then transformed, that is

B(P)  = B(P)jLJ (4.3)

4-2



4-3 §4.2 REVISED ELEMENT ARRAYS

and

B(S B(S) [Uj (4.4)

* where [j -was defined in (2.5) such that

A de, [Uj Ada- (4.5)

The definitions of B(P and B(S) in terms of the element shape functions follow

N.,.,, 0 0 I 0 0 01

0 Na,y, 0 0 0 0

Na,V1  N,, 2  0 I 0 0 0

N4 ,21  0 0 Na,21, 0 0

B(P) 0 N4 ,yi 0 I 0 Nl0 (4.6)

Na,y, N.,z1  0 IN,,y N.,,, 0

0 0 0 N.,,f 0 0

0 0 0 0 N6 ,, 1f 0

0 0 0 1Na,, NL,z1  0i

0 0 N61 1  10 0 0

0 0 Na111  0 0 0

0 0 N6121  0 0 Na121

- 0 0 N6 ,,V I 0 0 N.,y1
00 0(0S)N 1  (4.7)

at0 0 0 I0 0 N6 1

0 0 0 N0 0 0ay

0 0 0 1O N 6  0

The wide bars and hats in the above definitions emanate from (3.19)-(3.22) where

* they were used to define lamina displacement derivatives in terms of the natural (C, '7)

derivatives. Thus f 4 2  = -T fNa,f (4.8)
Na~y1 Na,,,J

4-3
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and
N=,} - N ,14 (4.9)

where the Jacobian matrices and determinant coefficients (jjjo and j2) were defined in

section 3.2.1. They are computed within an element by using the coordinate interpolation

formulas (2.37)-(2.38) as shown in section 4.2.5.

4.2.2 CBR2 Element Internal-Force Vector

Substitution of (4.1) and (4.2) into the internal-force operator (3.45) over an individual

element subdomain, leads to the corresponding element force vector. A nodal subvector is

given by

F' te(Ba~P)Tu(P) + B,(s)Ts(S)) dSe (4.10)

where all quantities are defined, and it remains only to numerically perform the surface

integration.

4.2.3 CBR2 Element Material-Stiffness Matrix

Substitution of (4.1) and (4.2) into (3.50) yields the element material-stiffness matrix.

A nodal submatrix is defined as

Kynatle = LB(P)TD(P)B~P) + Bi )D(S)B(S) dS~ (4.11)

and typically employs the same numerical quadrature scheme as used for the internal-force

vector (4.29).

4-4
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4.2.4 CBR2 Element Geometric-Stiffness Matrix

For the geometric stiffness, we may exploit the simplicity of the CO interpolation and

obtain (after some manipulation) a much more economical form than suggested by (3.53).

The result is the following element nodal submatrix

geore [g gI g(4.12)
- [gall gajI]

where

996= VN.(SVM +S12VNb)

..- T(s + S22V6) (4.13)

gas = .VNT (S,1 N + S2SV2 b + S'4 N&)

+ VN (S 22 "TR + SNNb+ S 2 4 Nb) (4.14) .'

T

gas= (VN S21 + V1Vr S31 + N.S 4 1 )VN6

-TT
+(VN--,S 22 + VfN 4 S3 2 + NVS 4 2)fb (4.15)

gag= VN (S2 2 r- + S23 VN + S 4N)
T+ VN. (S32VNb + S33 VNb + S34N&)

+N, (S 4 1 -VNb + S 4ON) (4.16)

• I o.
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The shape-function gradient operators in the above definitions correspond to (4.10) - -

and (4.11), i.e.,

VN, = N 0 ,4 (4.17)
N.,y

and

N . , z ( 4 .1 8 )

4.2.5 Comvutation of Lamina Transformations and Jacobians

The lamina transformation matrix, L, and the Jacobian quantities, J, ji, jo, j. and j2,

appear (or are required) in most of the revised element arrays. The following is a convenient

step-by-step procedure for computing these quantities at an element integration point. As

a prerequisite, it is assumed that the current element nodal coordinates, 2., and the shape

functions Na, N5 ,f, and N.,,, are given.

Step 0 "Normal" Vectors (R.). Before processing any of the integration points, element
nodal psuedo-normal vectors, R., should be evaluated (for J , j, and j2). By the
Normality Assumption (Al), these may be computed from the reference surface
coordinates, i.e.,

= X (4.19)

where

-= "4 = (4.20)
-f N.3 &N (4.21)

b=1 '.

E(4 =b(.1
b=1

and 4 refers to the ( ,q) coordinates at node "a". This requires the ,.,-l,.ation
of the shape-function natural derivatives at nodes as well as integration points.
However, this involves no additional computation, since natural derivatives are
the same for all elements of a given type and hence may be pre-computed.

The following steps are then performed at each element integration point:

4-6
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Step I Tangent and Curvature Vectors (fol/f and o/at.) ..

(1) W F() =:26(4.22)
G=1

-- .N.. ,,,;

WN W g (4.23)

,,( = N()N. 14
h()() = W9., (4.24)

8=1 I.

h () N -N 1 (4.25)

Step 2 Laminar Transformations (L). The lamina-global transformation matrix (see
(4.5)) is defined at a given interior point as

L L (4.26) t

where 6.,, 6.t and are orthogonal unit vectors parallel to the local ze, ye and
ze axes, respectively. To obtain an unb:ased lamina system - with respect to the
natural (surface) coordinates, , /- we construct the unit vectors, i1 ,&,6i 8 9
as follows:

(a) 6.4, = x/11 (4.27)

(b) iA = 1i + i,)/11 II (4.28)
( ) *B = X &A (4.29)

(d) , , - (A - n) (4.30)

v/2
(e) yt - - (A + &B) (4.31)

Step 3 Surface Jacobian Matrices (I. and I,)

:-[..,) t 1 ] (4.32)

4-7
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and

_,_, _ r(,i he) I (&,. h,)

(i , he) (6,t  h,,) (4.33)

Step 4 Jacobian Determinants and Inverses. The final step is to compute the inverses of
je andj, and use formulas (3.9)-(3.11) to obtain the determinant coefficients jo,j 1
and j2. Given these primitive quantities, it is then straightforward to compute
the shape function laminar derivatives (4.8)-(4.9) and hence all of the kinematic
quantities required for the element force and stiffness arrays.

4-S
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§4.3 Specific Shell-Element Types

The elements to be used in conjunction with the current (CBR2) shell formulation are

essentially the same as those used in our earlier work. Several different kinds of 4, 9 and . '

16-node elements are being adapted for this purpose (Fig. 4). All have in common the use

of Lagrange, C', interpolation and selective/reduced Gaussian surface quadrature [9].

The B ("B-bar") technique of building the selective (component-by-component) in-

tegration into the definition of the B-matrix [8,19] is also used here. However, since the

CBR2 B-matrix has a different structure than the CBR version, selective integration has

a slightly different connotation. Such differences are explained in the following sample

element descriptions.

4.3.1 4-Node Elements

The CBR2 approach was developed primarily for use with curved elements, since these

are expected to be most effective for large-deformation problems involving thick, inelastic

shells (i.e., for reinforced concrete applications). Since the 4-node elements are basically

flat, they do not benefit from the curvature-corrections introduced in section 3.2 - al-

though they may benefit from the parabolic shear corrections (§3.3). Nevertheless, they

will be employed for purposes of comparison with the higher-order elements. In all cases,

the current 4-node elements use bilinear shape functions and selective/reduced integration

on internal force, stiffness and geometric stiffness arrays; refer to [191 for details.

1-
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4.3.2 9-Node Elements

The Heterosis element [10], which combines Lagrange (biquadratic) interpolation for

rotations and Serendipity (8-node) interpolation for translations, is currently the recom-

mended 9-node element. To enhance convergence without giving rise to communicable

mechanisms, we use selective/reduced integration on both transverse-shear and membrane

strains. This corresponds to 2 x 2 quadrature on the entire B (5 ) matrix, as well as on

partitions of B ( P ) that couple to trai]ational DOFs: columns 1-3 of (4.6). On all other

terms, we use a normal (i.e., nearly exact) rule of 3 x 3, and, via the B-bar technique,

extrapolate the reduced partitions to normal quadrature points before performing the ac-

tual integration loop. Furthermore, it has also been found effective to underintegrate the - -

geometric stiffness matrix, as reported in [19].

4.3.3 16-Node Elements

With bi-cubic shape functions, it appears safe to use full 4 x 4 quadrature on the 16-

node elements, as neither locking nor rank deficiency are formally present 118]. However,

for thin shells we have found that the convergence rate is significantly improved by using

selective 3 x 3 quadrature in the same manner as described above for the 9-node element.

It is likely that similar improvement will be observed for thicker shell problems.

REMARK 4.1

Ideally, we would prefer uniform reduced integration for all of the above elements, as
this significantly reduces both element formation and stress computation time. However,
this also increases rank deficiency, and with it the chances of activating spurious modes.
Presently, rigorous techniques for correcting rank deficiency (via stabilization matrices,
etc.) are being actively pursued [12-14]; the results will be incorporated in the element
library when appropriate.
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§4.4 The Global Algorithm

In this section we outline the basic steps involved in obtaining a solution to the finite-

element equations of motion for a shell structure. The structural equations (2.41) represent

the global assembly of the individual element arrays defined in section 4.2. The constitutive

(stress) algorithm, which is embedded within the global (displacement) algorithm, will be

discussed subsequently in Section 4.5.

For purposes of illustration, we consider the case of nonlinear dynamics, and em-

ploy the generalized Newmark method to integrate the ODE system (i.e., for temporal

discretization), and "true-Newton" tangent stiffness updates for nonlinear iteration. The

global algorithmic equations to be solved at each nonlinear iteration (i + 1) within each

time step (n + 1) are then [6]:

K ",( Ad('+) - R'() (4.34)R,+, C.,:

for the iterative displacement increment, Ad(+' ), followed by the corrector formulas

d(+')= d Ad ('+  (4.35)C,,¢.+1 C1+ 1 Cn+,
v(i ,,  0 () 0+

=C., ¢ + (L)AdC, (4.36)

, (+,), + ( I )Ad 1) (4.37)

where v and a are approximations of A and a, respectively; 0 and -y are Newmark algo-

rithmic parameters; At is the time step increment, and the effective stiffness matrix and

residual force vector are defined as

K" = M+K (4.38)

and

R"= Fet - F"t - Ma (4.39)

The subscript "C" appearing in (4.34)-(4.37) denotes the computational basis, that is,

the directions used to express the assembled degrees-of-freedom at each node. For shells,

4-11
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I these are usually aligned in some manner with the local surface coordinates, since this is

* both convenient for boundary conditions and for removal of unnecessary normal rotation

degrees-of-freedom as well.

IFinally, the meaning of the symbolic update operator ED" which is different from

simple addition only for rotations, is explained under Task 4 below.

PW To complete the specification of the algorithm, the following predictor formulas are

used at the beginning of each new time step, nt + 1

di) de +I, 20 At2 aR) (4.40)

n+• 2

=(O vn + (1 -Y)Atan (4.41)

a(0) = 0 (4.42)

a/ +|

The solve/correct sequence (4.34)-(4.37) is repeated iteratively until convergence at a

given time step, i.e., when Ad and R norms become acceptably small. Then the time

step is advanced (n sa n + 1) by updating the prescribed external force Fet h employing

the predictors (4.40)-(4.42), and so on.

.

The shell-element-related aspects of the above algorithm are now summarized for a sin-

gle global iteration cycle. Given the current element nodal coordinates ary normalo ..

s global /computational transformations for translations and rota-

tions ~I T. ~, the stress and constitutive tensor at element integration points, {xw )(i }.4 1

and respectively, and corresponding resultant quantities; the following tasks are

performed:

4-12 +A4
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Task 1 Element Formation. Form element arrays K, F i" t e, Feste and M', and trans-

form to the nodal computational bases via

K&" TTKbTb (4.43)

for matrices, and
Fgnte = TTFnte (4.44)

for vectors, where the nodal block-diagonal transformation matrix, T., is defined
by

T, T. 0 (4.45)

The orthogonal transformations, T. and 1. are assumed to be uacr-upplied at
the beginning of the analysis, with the rotational triads, T, updated as explained
under Task 4. The defining relations for , T and X are as follows:

AU 4  T Aiia c  (4.46)

Aua = X.Afac = XT.aDA4  (4.47)

where the skew-symmetric matrix, X., relating rotation increments to increments
in relative-displacement of the normal (AG), requires only the components of R.,
i.e., [ 0 -is, -12,

-13a 0 14. (4.48)

1 2. -Z 1 a 0

It

Task 2 Assembly. Assemble the element arrays into the global arrays: Kc, F i t, Fezt
and MC; combine to form K" and R*.

S

Task 3 Incremental Solve. Solve the global matrix equations (4.34) for Ad"'i ). (If the
matrix, K, has not been updated, this involves only forward reduction and back
substitution; otherwise the matrix is first factored.)

S

Task 4 Global Displacement UDdate. Update the nodal configuration according to (4.35)-
(4.37). (Here we define the symbol " G ".) For translational components of
displacement, (4.35) simply implies

(UA +1 = { UA}+1 + {AUA) (4.49)
while for rotational components, we instead update the rotational triads via

TAJ+"- QAe) (4.50)

4-13
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where AAC is the rotation increment at node "A" (the global equivalent of
element node "a") emanating from the solution vector, Adc; and the orthogonal
matrix operator, Q (explained thoroughly in 1191) is defined functionally as

Q(Ae) = I+ &1 + 2 (4.51)II (A02 /4) I (451 I.-

Note that A& is the skew-symmetric matrix corresponding to the vector Af (just
as X corresponds to 2), and AO is its magnitude.

Task 5 Element Displacement Update. Using the total displacements, UA, and the ro-
tational triads, TA, computed globally in Task 4, we then localize to the element
level and obtain the new reference surface displacement and pseudo-normal vec-
tors as

n + n+ + {iia (i+) (4.52)

and
[T..i+,) = [ (4.53)

Note that the pseudo-normal vectors, R,, obtained in this way are used only to
compute displacement increments, Afi, for strain/stress calculations (Task 6).
Alternatively, when constructing the CBR2 shell-element kinematic interpolation
arrays (e.g., B), we use the reference surface normals as described in Section 3.

Task 6 Constitutive Algorithm. Here, we employ the updated element nodal coordi-
nates (4.52) and pseudo-normal vectors (4.53), and the previous stresses and

material-dependent historical quantities to compute the current stresses g i+1

and constitutive matrices C('+'), resolved in the current lamina basis at each
element integration point. The algorithm is sketched in Section 4.5.Ii

Task 7 Stress/Constitutive Resultants - Thickness Integration. This constitutive post-
processing step, required in both CBR and CBR2 shell formulations, is also dis-
cussed in Section 4.5. The resultant quantities are employed directly in the for-
mation of element arrays for the next iterative cycle.

GO TO Task I (i i + 1).
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§4.5 The Constitutive Algorithm

In this section we outline the procedure that has been implemented for computing stresses

and the corresponding resultants required as input to the element equilibrium arrays.

Specific constitutive models (e.g., elasticity, plasticity, ...) will not be discussed here,

but rather a generic algorithm for integrating a class of rate constitutive equations. The

algorithm is both implementationally convenient and numerically accurate for problems

involving large deformations [7].

4.5.1 Stress Computation

The Truesdell rate constitutive equations (upon which our linearized variational equa-

tions are based) may be written as

where

q ( T) - +ew- u-?C (4.55)

and

1 = (a) (4.56)

and ii and cZii are the symmetric and skew symmetric parts of the velocity gradient tensor,
8ti,/8z,.• :

We integrate (4.54) to obtain r via the following incrementally-objective algorithm.

The details are discussed in (19].

Given a converged stress state at time (or load) step n, and a displacement increment
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between step n and the current global iteration at step n + 1, we compute

64+1 = in + At, (4.57)

where

,= Q~..QT (4.58)

and

- Q2 1.C 1]Q2 (4.59)

The subscripts t., i, and t,ni refer to the particular lamina basis active at steps

n, n + 1 and n + 1/2, respectively (i.e., the time of lamina-resolution). Except for the

incremental quantities, the step number also refers to the time of evaluation. Furthermore,

C +- (4.60)

is the Truesdell-modified material tensor, and

2 8 u,- - + am,-) (4.61)

is the incremental midpoint strain tensor, where

AU = U.+ - mU (4.62)

and +

X - (Xn "+" X+ (4.63)

Finally, Q, and Q2 are orthogonal (rotation) matrices that are functions of the lamina

transformations and the skew-symmetric part of aAui/zxTid. In the presence of small

shear deformations (both transverse and in-plane), Q, and Q2 each approach the identity
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matrix, I. For the sake of brevity, we will assume this to be the case in the present p

discussion. The more general case is considered in [19).

To compute Aeli d at a typical shell-element integration point, it is merely necessary

to replace x by x"'s in the definition of the B matrices given in Section 4.2.1. (Note that

for shells, (4.63) applies to both 1 and 2.) The in-plane and transverse-shear components

of the incremental midpoint strain tensor are then evaluated using

N4..

A-(P)md Z(P) B "n"Ad. (4.64)
4=1

and -N.

A-(s)md - Z(s) E B(S)"'IAd" (4.65)

respectively.

This completes the definition of kinematic quantities required for the shell constitutive

algorithm. Notice, however, that the normal strain component, (A"Cs )33, is not kine-

matically available from (4.64)-(4.65). For this, the static (zero-normal-stress) constraint

is used to extract the unknown strain through the constitutive equations.

In the elastic case, we may solve (4.57) for (A94ZJ )3 such that (*.+,)3 = 0. yielding

(4.)3s = -(if.)3 + C,)aJ( .. ,,)J (4.66)

* where Q and A cd are 6 x 6 and 6 x 1 matrix/vector counterparts of the tensor quantities,

respectively, arranged so that the 33 lamina component comes last. Substitution of (4.66)
L

in (4.59) then satisfies the static constraint identically.

For the inelastic case, it is suggested that (4.66) be employed in a sub-iterative fashion,

so that the updated (inelastic) material tensor, C, may be accounted for in the calculation.

4-17
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4.5.2 Resultants

Given the pointwise stresses and constitutive coefficients, it is then necessary to in-

tegrate through the thickness for the corresponding resultant quantities appearing in the

element equilibrium arrays. Namely, s(P) and s9) are required for the internal force vector
(3.45), D (P) and D($ ) for the material stiffness matrix (3.50), and S for the geometric

stiffness matrix (3.53).

Numerically, the resultant quantities are generated via one-dimensional Gauss quadra-

ture in a piecewise fashion through an optional sequence of "material" layers. Due to J
the potential diversity of material properties and layer thicknesses, a different number of
quadrature points may be used within each layer. The following thickness integration

formula is used for general layered shells

Nfe. Nip(l)J f(i) di 2 ' i) (4.67)

where hi is the thickness of layer 1, wi Is the Gauss integration weight at point i within

layer I and ii is the corresponding thickness coordinate. The relationship between the

Gauss integration coordinate C,, which is usually given in the bi-unit interval (-1, +1) -

within each layer - and the thickness coordinate ii, which is measured from the element

reference-surface, is as follows

z = + 1L (4.68)

where i is the i coordinate at the middle of layer 1.

For single-layer shells, at least 2 thickness integration points are required in the elastic

case; more for plasticity (e.g., 5-7). For multi-layer shells, it is often possible to make due

with less points per layer (i.e., > 1), but this is dependent on the relative layer thicknesses

and material properties. It is strongly advised that such problem-dependent decisions be

*. made on the basis of numerical experiment.

4-18
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matrix, 1. For the sake of brevity, we will assume this to be the case in the present

discussion. The more general case is considered in 1191.

To compute At7"'t at a typical shell-element integration point, it is merely necessary

to replace x by xmsd in the definition of the B matrices given in Section 4.2.1. (Note that

for shells, (4.63) applies to both R and R.) The in-plane and transverse-shear components

of the incremental midpoint strain tensor are then evaluated using

N..

A- Z(") B& A~m do (4.64)
a=1

and
Neo%

AC(S)m d Zcs) B($)dAd. (4.6,5)

a=1

respectively.

This completes the definition of kinematic quantities required for the shell constitutive

algorithm. Notice, however, that the normal strain component,(Aid)s, is not kine- IC .

matically available from (4.64)-(4.65). For this, the static (zero-normal-stress) constraint

is used to extract the unknown strain through the constitutive equations. P

In the elastic case, we may solve (4.57) for (A-c'i)33 such that (Pj.., )s 0. yielding

= - [(it.)33 + ._,(,,(Ai)] (4.66)
=1

where and A._7&d are 6 x 6 and 6 x I matrix/vector counterparts of the tensor quantities,

respectively, arranged so that the 33 lamina component comes last. Substitution of (4.66)

in (4.59) then satisfies the static constraint identically.

For the inelastic case, it is suggested that (4.66) be employed in a sub-iterative fashion, ..

so that the updated (inelastic) material tensor, C, may be accounted for in the calculation.
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Section 5: SUMMARY 5-2

An efficient extension of the nonlinear finite-element procedures presented

in [191 for thin shells has been provided herein for the thicker, layer-model

type of shell structures encountered in many reinforced concrete applications.

The current technique eliminates much of the work associated with through-

thickness integration present in the earlier Continuum-Based shell-element for-

mulation 141. While a similar, resultant-type simplification was introduced in

[191 to first approximation (i.e., hIR < 1), the more general case is now han-

dled by including some additional terms that while expanding the element

kinematic arrays, still restrict thickness integration to stress and constitutive

quantities. This can mean significant element-formation cost savings for multi-

layer/elastic-plastic shell problems.

In addition, a higher-order (parabolic) transverse-shear profile has been

introduced in an attempt to eliminate the ad-hoc shear-correction factors in-

herited from linear analysis. This is expected to be an improvement for those

inelastic problems in which transverse shear plays a significant role. Neverthe-

less, the representation of transverse shear in such complex cases will require

further investigation.

It remains to evaluate the current shell-element procedures using some

realistic problems involving reinforced concrete constitutive models. Revisions

to the element software implementation are now in progress; these include ex-

tension of the element arrays to account for thick-shell behavior (as described

in Section 4) and provisions for interfacing with appropriate constitutive mod-

ules.
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